Enhancing Vacuum Insulation Value for End Use Applications

Design – The Path to Vacuum Insulation Value
1999 Design Experience

- Over the past year we have been involved in many product designs incorporating vacuum insulation
- Our experience involves
 - VIP manufacture
 - Product design
 - Product test
Types of Products

- Refrigerators/freezers
- Merchandisers
- Shipping containers
- Generic information will be presented to protect our customer’s confidentiality
Typical Customer Request

- “Just substitute vacuum insulation into my product”
- Customer views it as quick & dirty but will give an idea of the benefit
- Usually does NOT provide an estimate of potential benefit
- You can not change the performance of the insulation by a factor of 4 to 7 without changing the design
VIP Substitution Analogy

- You can not substitute a large powerful V8 engine into a small inexpensive car previously powered by a small 4 cylinder engine and see even half the potential benefit
Shipping Containers

- Heat gain will be drastically reduced using VIP
 - Consequently less coolant is required
- Entire container should be downsized
 - This provides more benefit
 - Smaller size
 - Less weight
 - Reduced surface area which further reduces the heat flow into the container
Shipping Containers Cont.

- The greatly reduced heat flow can result in changes in the temperature the payload sees
 - Frozen coolant that is used to maintain payload at refrigerated temperature may need to be redesigned to keep the payload from freezing
- VIP shipping containers should be designed from the payload out
Container Design Information

- Payload
 - Dimensions
 - Weight
 - Material
 - Heat capacity
 - Allowable temperature range
 - Required total thermal protection time
 - Other criteria such as orientation, access, etc
Container Design Information Cont.

- External temperature including transient excursions
- Coolant
 - Type
 - Amount
 - 5 pound limit on dry ice?
 - Any constraints on coolant location
- Method of transport
- Cost objectives
 - Container, freight, and total
Container Design

- Rapid transient computer analysis can be used to:
 - Iterate on the design
 - Optimized container dimensions, insulation wall thickness, amount of coolant
 - Prediction of payload temperature and coolant exhaustion versus time
 - Determines the theoretical potential performance
Container Design Cont.

- Construct prototype containers
- Conduct testing of prototype containers
- It is extremely important to know the theoretical potential performance
 - Compare to test results
 - It lets us know when we have reached optimum performance and stop working on the design
 - If test results and predicted performance disagree, there is something we don’t understand
 - Time to dig in and figure it out
Container Design Cont.

- Internal container temperature control
 - VIP control heat flow through the container walls and can effect **but not control** the internal temperature
 - Internal container temperature can vary greatly from top to bottom and even side to side
 - Both internal insulations and conductors may be required to obtain the desired temperature at the specified location
Container Design Example

- Original container
 - 22.5 x 19.25 x 19.5
 - 1.5 inch urethane
 - 48 pounds coolant
 - 120 hour endurance

- Optimized VIP container
 - 13 x 18 x 11
 - 1.0 inch VIP
 - 15.5 pounds coolant
 - 200 hour endurance
Container Design Example Cont.

- Exterior size reduced 70%
- Coolant reduced 68%
- Endurance increased 66%
Importance of Detailed Design

- Little things make a big difference
- Both containers are same size with 2 inch thick VIP and 5 pounds of dry ice

![Graph showing temperature over time for Container A and Container B.](image)
Refrigerator/freezer and Merchandisers

- Determine the design objectives
 - Reduced energy
 - Increased volume
 - Allow local room for a feature
 - Condensation control

- Ideally, you want to be involved in the new design at the very beginning
Refrigerator/freezer and Merchandisers

- Characterize the existing design through calorimetry testing
 - Checks the thermal envelope alone not the refrigeration cycle combined with the thermal envelope
- Determine the theoretical performance potential
 - Finite Element Analysis (FEA) can be used to estimate the heat flow through discontinuities
Refrigerator/freezer and Merchandisers

- Develop the new design
 - Optimum VIP performance requires thermal shorts be eliminated
- Conduct calorimetry validation testing of the new design
Refrigerator/freezer and Merchandiser Example

- VIP full coverage incorporation into existing design
 - Study shows energy savings of 15%
- Full redesign for maximum performance
 - Study shows energy cut to 25%
 - 75% energy savings
 - Calorimetry testing showed slightly greater savings
 - VIP is not responsible for all the savings
 - However, once the whole design is improved the VIP can offer maximum benefit
High Performance Analogy

- My experience with high performance and higher cost materials such as composite materials has taught me
 - A direct substitute for a low cost material in an existing design will not succeed
 - A new design is required to take advantage of the new performance and result in the required value to be successful
 - This is a slow market penetration process but it will happen
VIP Industry

- Should work toward new application product designs
- Gear toward a long and hard but successful market penetration