Experimental ProgressIn Predicting VIP Life-Long Performance

Vacuum Panel Designed Life

- Vacuum panel life is not just predicted
- The panel is designed for a particular life

VIP Performance vs. Time

- Atmospheric gases such as oxygen and nitrogen permeates into the panel
- Water vapor permeates into the panel

Focus of This Presentation

- Water vapor permeation into the VIP
 - ◆ Function of:
 - ★ Barrier properties
 - Driving force (VIP exterior temperature and humidity)

Review of Proposed Theory

- At the last symposium in Vancouver, I proposed a theoretical model of VIP moisture environment in an appliance wall
- This presentation will cover measured temperature and humidity inside appliance walls
- First lets briefly review the theory

Refrigerator/freezer Application

- A first assumption is that the vacuum insulation panel is in the same environment as the exterior of the refrigerator/freezer
- I propose that this assumption is not only conservative but in error

The Special Case of a Refrigerator or Freezer

- Virtually continuous operation over its life
- The cooling system effectively provides a moisture pump to move the moisture that gets into the wall to the cold inner wall

Theory

Exterior Wall
Inner Wall

Refrigerator/freezer

- Moisture may enter the refrigerator wall and move to the freezer inner wall
 - Coldest spot (lowest energy)
- Doors are of course handled separately

Approximate Moisture Permeance

- Permeance is a measure of the water transmission rate of a material
 - Grams of water per hour square meter, millimeter of mercury vapor pressure difference
- Or WVTR (water vapor transmission rate grams/sq.meter Day)
- Steel* = 0 WVTR
- *Note there are penetrations
 - However, manufacturers are careful to maintain a good moisture barrier

Approximate Moisture Permeance

- Barrier film = 0.0026 WVTR
- Urethane > 5000 WVTR

What Is the Vacuum Panel Environment?

- Relative humidity and temperature
 - Vapor pressure results from both relative humidity and temperature
 - ★ Note: temperature is still important by itself since barrier performance is a function of temperature and vapor pressure

What Is the Relative Humidity and Temperature in the Wall?

- If moisture gets into the wall it rapidly moves to the cold interior wall
- The maximum vapor pressure in the wall will be the vapor pressure of 100% relative humidity at the temperature of the cold inner wall

Vapor Pressure at 100% Relative Humidity

- Refrigerator at 3.3°C = 5.58 mm Hg
- Freezer at -23°C = 0.55 mm Hg
- The wall cavity will be at equilibrium with one of the above

Inside the Wall at the Hot Wall

- The vapor pressure must be equal to the cold wall
 - Result of the rapid diffusion of water through urethane foam

VIP
Hot
Wall
Cold
Wall
Moisture

Inside the Wall at the Hot Wall

- A relative humidity inside the wall at the hot wall can be calculated from the vapor pressure
 - Refrigerator
 - If exterior temperature is 21.1°C, RH = 31%
 - ✓ If exterior temperature is 32.2°C, RH = 16%
 - Freezer
 - If exterior temperature is 21.1°C, RH = 3%
 - ★ If exterior temperature is 32.2°C, RH = 1.5%

Thus, Vacuum Panel Environment for Moisture Is:

Half barrier film area at hot wall condition and half at the cold wall condition

The Previous Slides Were Theory - Now What Does the Test Data Show

- Actual temperature and humidity were measured.
- Refrigerator/Freezer Test Unit
 - A 21 cubic foot (0.59 cubic meters) side by side refrigerator that had been operating in a residential house for 22 years was selected
 - Freezer wall thickness = 38 mm
 - Refrigerator wall thickness = 38 mm

Test Unit

Temperature and Humidity Measurement

Measurement

• A combined temperature/humidity probe was used.

• Holes were drilled into the refrigerator and freezer sidewalls from the back wall. The 9 mm holes were drilled parallel the sidewalls.

Drilled hole for probe

Drilled hole for probe

Test Results

• Inside freezer wall: 8.9 C and 17% RH or vapor pressure 1.45 mm Hg

Test Results

(Theory says 0.56 mm Hg)

• Inside refrigerator wall (connected to freezer): 14.4 C and 22% RH or vapor pressure 2.72 mm Hg

(Theory says same as freezer if refrigerator and freezer are connected: 0.56 mm Hg or 5.81 mm Hg if not connected)

Water Vapor Pressure (mm Hg)

Panel Environment

- Far less sever than the original assumption of the exterior room conditions
- If refrigerator is connected to the freezer, then there is less vapor pressure than a refrigerator by itself

What Does This Mean - Example

- VIP 508 x 584 x 25.4 mm
 - Metalized barrier film
 - ◆ 20 year life
 - Freezer wall
 - ★ Requires about 5 grams of desiccant
 - Refrigerator wall connected to freezer
 - ★ Requires about 10 grams of desiccant
 - Refrigerator wall NOT connected to freezer
 - ★ Requires about 25 grams of desiccant

Now The Other Part of The Problem

- Moisture pickup in VIP before the appliance is turned on
 - Storage before shipment to appliance manufacturer
 - During shipment to appliance manufacturer
 - Storage before manufacture
 - Storage after manufacture
 - Shipment to distributor
 - Storage at distributor before consumer begins use

Calculation Before the Appliance is Turned On

- A bin method of calculation can be used
 - Time period selected (hour, daytime, nighttime, week, month, etc.)
 - Temperature and humidity defined for the time period
 - Climate data is available on the internet or from sources such as American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE)
 - Average water vapor pressure for each time period estimated
 - From the barrier film water vapor transmission rate versus vapor pressure: calculate required desiccant for the time period

Example – Exposure Before Appliance Is Turned On

- New Orleans, Louisiana, U.S.A.
 was selected as a sever location
 - Along the Gulf Coast of the United
 States very hot and humid
 - Sever conditions for New Orleans were assumed

New Orleans Example

New Orleans Vacuum Panel 508 x 584 x 25.4 mm				
May	Temperature	% RH	Vapor Pressure (mm Hg)	Grams of Desiccant
Day	29 C (84 F)	90	26.9	0.41
Night	23 C (73 F)	90	18.8	0.24
June				
Day	32 C (90 F)	90	32.5	0.55
Night	26.6 C (80 F)	90	23.6	0.34
July				
Day	33 C (92 F)	90	34.5	0.61
Night	27.8 C (82 F)	90	25.1	0.37
August				
	33 C (92 F)	90	34.5	0.61
Night	27.8 C (82 F)	90	25.1	0.37
Septem	ber			
Day	29.4 C (85 F)	90	27.7	0.43
Night	23.9 C (75 F)	90	20.1	0.26
Octobe	r			
	25.5 C (78 F)	90	22.1	0.30
Night	18.9 C (66 F)	90	14.7	0.17
			\overline{T}	otal 4.66

Next Steps – Further Validation

- More temperature-humidity data in refrigerator and freezer walls should be collected
- Moisture gain in the desiccant before the unit is turn on should be collected
 - Desiccant weighed before inserted in the VIP and then appliance dissected after normal ship and storage to determine the final desiccant weight gain

Conclusions:

- The moisture environment in refrigerator and freezer walls is much less sever than the room ambient
 - Small amounts of desiccant required for very long life
- The environment and moisture pickup before the appliance is turned on should not be ignored