Vacuum Insulation Panel Life Prediction for Refrigerator/freezer Applications
Vacuum panel life is not just predicted.
The panel is designed for a particular life.
Variables That Effect Life

- R versus vacuum level of the core material
- Barrier film performance
 - Effective permeance for each gas
 - Generally non-linear with temperature and humidity level
Variables That Effect Life

- Amount of desiccant in panel
 - Absorbs water

- Amount of getter in panel
 - Absorbs oxygen, nitrogen, and other atmospheric gases

- Panel environment
 - Relative humidity
 - Temperature
 - Atmospheric gases
Design of Panel Life

- If you know
 - R versus vacuum
 - Barrier performance
 - Panel environment
- You can **design** a panel for a given life
 - Adjust amount of desiccant and getter
Typically it is assumed that the vacuum insulation panel is in the same environment as the exterior of the refrigerator/freezer.

I propose that this assumption is conservative but substantially in error.
The Special Case of Refrigerator

- Virtually continuous operation over its life
- The cooling system effectively provides a moisture pump to move the moisture that gets into the wall to the cold inner wall
Refrigerator/freezer

- Moisture may enter the refrigerator wall and move to the freezer inner wall
 - Coldest spot (lowest energy)
- Doors are of course handled separately
Approximate Moisture Permeance

- Permeance is a measure of the water transmission rate of a material
 - Grains of water per hour square foot, inch of mercury vapor pressure difference
- Or WVTR (water vapor transmission rate – grams/sq.Ft. Day)
- Steel* = 0 WVTR
- *Note there are penetrations
 - However, manufacturers are careful to maintain a good moisture barrier
Approximate Moisture Permeance

- Barrier film = 0.003 WVTR
- Urethane > 500 WVTR
What Is the Vacuum Panel Environment?

- Atmospheric gases – oxygen, nitrogen, etc
 - Can’t escape this part
- Relative humidity and temperature
 - Vapor pressure results from both relative humidity and temperature
 - Note: temperature is still important by itself since barrier performance is a function of temperature and vapor pressure
What Is the Relative Humidity and Temperature in the Wall?

- If moisture gets into the wall it rapidly moves to the cold interior wall.
- The maximum vapor pressure in the wall will be the vapor pressure of 100% relative humidity at the temperature of the cold inner wall.
Vapor Pressure at 100% Relative Humidity

- Refrigerator at 38°F = 0.229 in. Hg
- Freezer at -10°F = 0.022 in. Hg
- The wall cavity will be at equilibrium with one of the above
Inside the Wall at the Hot Wall

- The vapor pressure must be equal to the cold wall
 - Result of the rapid diffusion of water through urethane foam
Inside the Wall at the Hot Wall

- A relative humidity inside the wall at the hot wall can be calculated from the vapor pressure
 - Refrigerator
 - If exterior temperature is 70°F, RH = 31%
 - If exterior temperature is 90°F, RH = 16%
 - Freezer
 - If exterior temperature is 70°F, RH = 3%
 - If exterior temperature is 90°F, RH = 1.5%
Thus, Vacuum Panel Environment for Moisture Is

Refrigerator only

- 90°F
- 16% RH
- 38°F
- 100% RH

Frig/Freezer if connected or Freezer only

- 90°F
- 1.5% RH
- -10°F
- 100% RH

Half barrier area at hot wall condition and half at the cold wall condition
Proposed Panel Environment

- Far less severe than the original assumption of the exterior room conditions
Proposed Panel Environment

- Typical example
 - 15 year life
 - R initial = 30
 - R final = 24
 - Original assumption
 - 1 getter
 - 50 grams of desiccant
 - Proposed assumption
 - 1 getter
 - ???. 5 grams of desiccant
 - No one has done testing under the conditions proposed
Next Steps

- What is proposed is a theory based on some fact

 - It has not been proven by actual refrigerator and freezer internal wall relative humidity measurements
Next Steps

- I am looking for a good test refrigerator/freezer to obtain actual measurements
 - Standard refrigerator/freezer
 - Operating in a high temperature/humidity environment for a long time
 - Agreeable to making holes in walls for probes